LATEST APPSGONEFREE Follow us on twitter
GearAdvice AppAdvice/TV NowGaming WatchAware

排列组合快速计算

排列组合快速计算

by Shunlai Weng

What is it about?

排列组合快速计算

App Details

Version
1.0
Rating
NA
Size
21Mb
Genre
Utilities
Last updated
October 25, 2019
Release date
October 25, 2019
More info

App Store Description

排列组合快速计算

我们做过专门调查,发现这三个排列组合基本公式在大学生中广泛使用,平常我们应用的都是计算器,但是它并不能满足我们日常生活中的很多需求,所以我们特此开发了一款app,可以快速的计算排列组合。

何为排列组合?

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
计算公式:
排列组合计算公式
排列组合计算公式(2张)
此外规定0! = 1
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
计算公式: ;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
符号

C-Combination 组合数 [1]
A-Arrangement 排列数(在旧教材为P-Permutation)
N-Number 元素的总个数
M- 参与选择的元素个数
!- Factorial阶乘
基本计数原理
⑴加法原理和分类计数法
⒈加法原理:做一件事,完成它可以有n类办法,在
组合恒等式
组合恒等式(2张)
第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
⑵乘法原理和分步计数法
⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
⒉合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
3.与后来的离散型随机变量也有密切相关。

Disclaimer:
AppAdvice does not own this application and only provides images and links contained in the iTunes Search API, to help our users find the best apps to download. If you are the developer of this app and would like your information removed, please send a request to takedown@appadvice.com and your information will be removed.